本节主要记录biopython库的学习,学习资源来自于生信修炼手册公众号,仅做个人学习使用。
biopython简介
biopython可用于常规的生信分析处理:
- 对常用的文件格式,比如fasta, blast等,进行读写
- 对blast, clustalw等常用软件的集成
- 对NCBI, SwissPort, PDB等常用生物信息学数据库的检索和解析
- 进化树的构建
- 基因组数据的可视化
其中存在多个针对不同任务开发的子模块
- Bio.Seq, 提供了Seq类,即生物学序列对象,最常见的就是碱基或者核酸序列,比如fasta文件中保存的序列
- Bio.SeqRecord, 提供了SeqRecord类,包含了序列的注释信息,比如fasta文件中的序列标识符
- Bio.SeqIO, 提供了parse方法,来读取不同格式的序列文件,比如fasta/genebank等格式
- Bio.Align, 提供了MultipleSeqAlignment对象,以及读取多序列比输出结果文件的方法
- Bio.Blast, 提供了运行blast比对软件的方法,以及解析blast输出结果的方法
- Bio.Entrez, 提供了NCBI Entrez 系统的接口,可以查询,检索,下载, 解析数据库中的内容
- Bio.SwissPort, 提供了Swiss-prot数据库的接口,可以查询,检索,下载, 解析数据库中的内容
- Bio.PDB, 提供了PDB数据库的接口,可以查询,检索,下载, 解析数据库中的内容
- Bio.Phylo, 提供了查看系统发育树和可视化的各种方法
- Bio.Graphics, 提供了基因组数据的可视化功能
使用biopython处理序列数据
biopython中存在三个子模块可用于处理序列数据
- Bio.Seq 表示最原始的序列对象,提供了序列的格式化,反向互补,碱基计数等基本功能
- Bio.SeqRecore 表示序列记录,在序列对象的基础上,进一步添加了序列的id, 名称,属性等各种注释信息
- Bio.SeqIO 用于读取特定的文件格式,返回 SeqRecord对象
from Bio.Seq import Seq
my_seq = Seq('ATCGTACGATCT')
my_seq
# 切片
my_seq[1]
my_seq[1:3]
my_seq[::-1]
# 小写转换
my_seq.lower()
# 大写转换
my_seq.upper()
# split, 序列分隔
my_seq.split('A')
# join, 序列连接
my_seq2 = Seq('ACGACTGACTAGCT')
Seq('NNN').join([my_seq, my_seq2])
# 格式化
'id:1,seq:{}'.format(my_seq)
# 互补
my_seq.complement()
# 反向互补
my_seq.reverse_complement()
# 转录
my_seq.transcribe()
# 翻译
my_seq.translate()
# Bio.SeqRecord在序列的基础上,进一步存储了相关的注释信息
from Bio.SeqRecord import SeqRecord
my_seq = Seq('AGCTACGT')
my_seqrecord = SeqRecord(my_seq)
my_seqrecord
# 多种信息查看
my_seqrecord.seq
my_seqrecord.id
my_seqrecord.name
my_seqrecord.description
# Bio.SeqIO用于文件的读写
from Bio import SeqIO
for seq in SeqIO.parse('input.fasta', 'fasta'):
print(seq.id, seq.seq)
for seq in SeqIO.parse('input.gb', 'genebank'):
print(seq.id, seq.seq)
# 读入为list
records = list(SeqIO.parse('input.fasta', 'fasta'))
records[0]
# 格式转换
records = SeqIO.parse("input.gb", "genbank")
SeqIO.write(records, "out.fasta", "fasta")
count = SeqIO.convert("input.gb", "genbank", "out.fasta", "fasta")
序列比对在biopython中的处理
局部比对最经典的代表是blast, 全局比对则用于多序列比对。
# 读取多序列比对结果 Bio.AlignIO
from Bio import AlignIO
alignment = AlignIO.parse('clustal.out', 'clustal')
print(alignment)
for i in alignment:
print(i.id)
# 输出多序列比对结果
alignments = AlignIO.parse("aln.fasta", "fasta")
AlignIO.write(alignments, "aln.clustal", "clustal")
# 格式可转换
count = AlignIO.convert("aln.fasta", "fasta", "align.clustal", "clustal")
# 运行多序列比对程序
from Bio.Align.Applications import ClustalwCommandline
cline = ClustalwCommandline("clustalw2", infile="input.fasta")
# blast运行
# 联网状态下,调用NCBI网站的blast程序
# 传统的文件读取, 适合fasta格式
from Bio.Blast import NCBIWWW
fasta_string = open("input.fasta").read()
result_handle = NCBIWWW.qblast("blastn", "nt", fasta_string)
# Bio.SeqIO读取,适合fasta,genebank等格式
record = SeqIO.read("input.fasta", format="fasta")
result_handle = NCBIWWW.qblast("blastn", "nt", record.format('fasta'))
# 本地运行需要构建对应数据库
from Bio.Blast.Applications import NcbiblastxCommandline
blastx_cline = NcbiblastxCommandline(query="query.fasta", db="nr", evalue=0.001, outfmt=5, out="output.xml")
stdout, stderr = blastx_cline()
# 解析blast的输出
# biopython中blast默认的输出格式为xml
from Bio.Blast import NCBIXML
blast_records = NCBIXML.parse(result_handle)
E_VALUE_THRESH = 0.001
for blast_record in blast_records:
for alignment in blast_record.alignments:
for hsp in alignment.hsps:
if hsp.expect < E_VALUE_THRESH:
print '****Alignment****'
print 'sequence:', alignment.title
print 'length:', alignment.length
print 'e value:', hsp.expect
print hsp.query[0:75] + '...'
print hsp.match[0:75] + '...'
print hsp.sbjct[0:75] + '...'
使用biopython查询NCBI数据库
biopython将NCBI的API接口Eutils工具进行了封装,通过Bio.Entrez子模块,可以在python环境中与NCBI进行交互。
# EInfo查看数据库的基本信息
Entrez.email = "hongyuchen@zju.edu.cn"
handle = Entrez.einfo()
record = Entrez.read(handle)
record
record.keys()
record['DbList']
# EInfo也查询某个特定的数据库的信息
handle = Entrez.einfo(db='pubmed')
record = Entrez.read(handle)
record.keys()
record['DbInfo'].keys()
record['DbInfo']['DbName']
record['DbInfo']['MenuName']
record['DbInfo']['Description']
# ESearch检索数据库
handle = Entrez.esearch(db="pubmed", term="cnv-seq")
record = Entrez.read(handle)
record.keys()
record["IdList"]
# EPost上传待查询的ID到NCBI服务器
id_list = ["19304878", "18606172", "16403221", "16377612", "14871861", "14630660"]
search_results = Entrez.read(Entrez.epost("pubmed", id=",".join(id_list)))
webenv = search_results["WebEnv"]
query_key = search_results["QueryKey"]
webenv
query_key
# ESummary下载对应的摘要信息
handle = Entrez.esummary(db="pubmed", id="33255631")
record = Entrez.read(handle)
record
record[0].keys()
record[0]['Item']
record[0]['Title']
# EFetch下载数据库中的内容
handle = Entrez.efetch(db="nucleotide", id="186972394", rettype="gb", retmode="text")
context = handle.read()
with open('out.gb', 'w') as fp:
fp.write(context)
# ELink数据库之间的交叉查询
record = Entrez.read(Entrez.elink(dbfrom="gene", db="clinvar", id="7157"))
record[0]['LinkSetDb'][0]['Link'][0]
# EGQuery统计检索项在各个数据库中检索到的条目
handle = Entrez.egquery(term="biopython")
record = Entrez.read(handle)
for row in record["eGQueryResult"]:
print(row["DbName"], row["Count"])
# ESpell自动校正拼写错误
handle = Entrez.espell(term="biopythooon")
record = Entrez.read(handle)
record.keys()
record['Query']
record['CorrectedQuery']
进化树在biopython中的可视化
通过Bio.Phylo子模块,可以方便的访问和展示树状结构中的信息。
# 读取对应文件
from Bio import Phylo
tree = Phylo.read('tree.newick', 'newick')
tree
# 查看树状结构
print(tree)
# 可视化
tree.rooted=True
Phylo.draw(tree)
# 修改分支颜色
tree = tree.as_phyloxml()
tree.root.color = "gray"
mcra = tree.common_ancestor({"name":"E"}, {"name":"F"})
mcra.color = "salmon"
tree.clade[0, 1].color = "blue"
Phylo.draw(tree)
使用biopython可视化染色体和基因元件
通过BiolGraphics子模块可以对基因组结构进行可视化,支持线性和圈图两种可视化方式。其中,基因组结构信息存储在genebank格式的文件中,首先通过Bio.SeqIO读取结构信息,然后通过Bio.Graphics模块进行可视化。
# 示例数据:https://www.ncbi.nlm.nih.gov/nuccore/NC_005816
from reportlab.lib import colors
from reportlab.lib.units import cm
from Bio.Graphics import GenomeDiagram
from Bio import SeqIO
record = SeqIO.read("sequence.gb", "genbank")
# 提取gb文件中的feature信息,构建用于绘图的数据结构
gd_diagram = GenomeDiagram.Diagram("Yersinia pestis biovar Microtus plasmid pPCP1")
gd_track_for_features = gd_diagram.new_track(1, name="Annotated Features")
gd_feature_set = gd_track_for_features.new_set()
for feature in record.features:
if feature.type != "gene":
continue
if len(gd_feature_set) % 2 == 0:
color = colors.blue
else:
color = colors.lightblue
gd_feature_set.add_feature(feature, color=color, label=True)
# 线性图
gd_diagram.draw(format="linear", orientation="landscape", pagesize='A4', fragments=4, start=0, end=len(record))
gd_diagram.write("plasmid_linear.pdf", "PDF")
# 圈图
gd_diagram.draw(format="linear", orientation="landscape", pagesize='A4', fragments=4, start=0, end=len(record), circle_core=0.7)
gd_diagram.write("plasmid_linear.pdf", "PDF")
# 染色体图
entries = [("Chr I", 30432563),
("Chr II", 19705359),
("Chr III", 23470805),
("Chr IV", 18585042),
("Chr V", 26992728)]
max_len = 30432563
telomere_length = 1000000
chr_diagram = BasicChromosome.Organism()
chr_diagram.page_size = (29.7*cm, 21*cm) #A4 landscape
for name, length in entries:
cur_chromosome = BasicChromosome.Chromosome(name)
cur_chromosome.scale_num = max_len + 2 * telomere_length
start = BasicChromosome.TelomereSegment()
start.scale = telomere_length
cur_chromosome.add(start)
body = BasicChromosome.ChromosomeSegment()
body.scale = length
cur_chromosome.add(body)
end = BasicChromosome.TelomereSegment(inverted=True)
end.scale = telomere_length
cur_chromosome.add(end)
chr_diagram.add(cur_chromosome)
chr_diagram.draw("simple_chrom.pdf", "Arabidopsis thaliana")
# 在染色体上添加注释,标记基因组结构元件在染色体上的分布
chr_diagram = BasicChromosome.Organism()
chr_diagram.page_size = (29.7 * cm, 21 * cm) # A4 landscape
entries = [
("Chr I", "NC_003070.gbk"),
("Chr II", "NC_003071.gbk"),
("Chr III", "NC_003074.gbk"),
("Chr IV", "NC_003075.gbk"),
("Chr V", "NC_003076.gbk"),
]
max_len = 30432563
telomere_length = 1000000
chr_diagram = BasicChromosome.Organism()
chr_diagram.page_size = (29.7 * cm, 21 * cm)
for index, (name, filename) in enumerate(entries):
record = SeqIO.read(filename, "genbank")
length = len(record)
features = [f for f in record.features if f.type == "tRNA"]
for f in features:
f.qualifiers["color"] = [index + 2]
cur_chromosome = BasicChromosome.Chromosome(name)
cur_chromosome.scale_num = max_len + 2 * telomere_length
start = BasicChromosome.TelomereSegment()
start.scale = telomere_length
cur_chromosome.add(start)
body = BasicChromosome.AnnotatedChromosomeSegment(length, features)
body.scale = length
cur_chromosome.add(body)
end = BasicChromosome.TelomereSegment(inverted=True)
end.scale = telomere_length
cur_chromosome.add(end)
chr_diagram.add(cur_chromosome)
chr_diagram.draw("tRNA_chrom.pdf", "Arabidopsis thaliana")
使用biopython解析kegg数据库
原理在于利用KEGG数据库提供的API接口。在biopython中,通过Bio.KEGG模块,对kegg官方的API进行了封装,允许在python环境中使用kegg API。
# 下载数据
from Bio.KEGG import REST
pathway = REST.kegg_get('hsa00010')
# 查询内容转换为纯文本
pathway = REST.kegg_get('hsa00010')
res = pathway.read().split("\n")
res[0]
res[1]
# 结果解析
from Bio.KEGG import REST
request = REST.kegg_get("ec:5.4.2.2")
open("ec_5.4.2.2.txt", "w").write(request.read())
records = Enzyme.parse(open("ec_5.4.2.2.txt"))
record = list(records)[0]
record
record.classname
record.entry
# KEGG数据筛选案例
from Bio.KEGG import REST
human_pathways = REST.kegg_list("pathway", "hsa").read()
repair_pathways = []
for line in human_pathways.rstrip().split("\n"):
entry, description = line.split("\t")
if "repair" in description:
repair_pathways.append(entry)
repair_pathways
repair_genes = []
for pathway in repair_pathways:
pathway_file = REST.kegg_get(pathway).read()
current_section = None
for line in pathway_file.rstrip().split("\n"):
section = line[:12].strip()
if not section == "":
current_section = section
if current_section == "GENE":
gene_identifiers, gene_description = line[12:].split("; ")
gene_id, gene_symbol = gene_identifiers.split()
if not gene_symbol in repair_genes:
repair_genes.append(gene_symbol)
repair_genes